## Supplementary Exercise on Capacitor(PPC)

## 🔁 Level I

- 1. (a)  $R_1 = 120 \text{ k}\Omega$  $R_2 = 200 \text{ k}\Omega$ 
  - (b)  $C_2 = 72.13 \,\mu\text{F}$
- 2. (a) 3.077 μC, 4.923 μC
  - (b) both are at  $5.54 \times 10^5$  V
  - (c) 0.124 5 J
- 3. 0.05 C, 25 J
- 4. Charge on capacitor A = 0.036 C Charge on capacitor B = 0.072 C Equivalent capacitance =  $900 \mu F$
- 5. Equivalent capacitance =  $1.5 \mu F$ Charge on capacitor A = 1.5 mCCharge on capacitor B = 1.5 mC
- 6. 8 μF
- 7. (a)  $9.6 \times 10^{-3} \text{ J}$ 
  - (b) (i) 53.3 V
    - (ii)  $8.53 \times 10^{-3}$  J
- $8. \quad 4 \ \mu F$

## **₽ ₽** Level II

1. (a) Since the capacitor has been disconnected and isolated, the charge does not change.

:. 
$$Q = CV$$
  
= (950 pF)(400 V)  
=  $3.8 \times 10^{-7}$  C

(b) 
$$Q = C'V'$$
  

$$\therefore V' = \frac{Q}{V'}$$

$$= \frac{3.8 \times 10^{-7}}{50 \times 10^{-12}}$$

$$= 7600 \text{ V}$$

- (c) Final energy =  $\frac{1}{2}QV'$ =  $\frac{1}{2}(3.8 \times 10^{-7})(7\ 600)$ =  $\frac{1.444 \times 10^{-3} \text{ J}}{1.444 \times 10^{-3} \text{ J}}$
- (d) Initial energy =  $\frac{1}{2}QV$ =  $\frac{1}{2}(3.8 \times 10^{-7})(400)$ =  $7.6 \times 10^{-5}$  J

Work done required = final energy – initial energy =  $1.368 \times 10^{-3}$  J

- 2. (a) Combined capacitance of 15- $\mu$ F and 30- $\mu$ F capacitors = 10  $\mu$ F
  - :. Combined capacitance between Z and B = 10 + 40= 50 uF

$$\therefore \text{ p.d. between } Z \text{ and } B = (240) \left( \frac{50}{50 + 50} \right)$$
$$= 120 \text{ V}$$

(b) For capacitors in series,

$$\frac{V_1}{V_2} = \frac{C_2}{C_1}$$

$$\therefore \text{ p.d. between } X \text{ and } Y = (120 \text{ V}) \left(\frac{15}{15 + 30}\right)$$

$$= \underline{40 \text{ V}}$$

(c) If the 50-μF capacitor is shorted,

$$V_{XY} = (240 \text{ V}) \left( \frac{15}{15 + 30} \right)$$
  
= 80 V

(d) We know from part (c) that it will not be the 50-µF capacitor.

If the 30-
$$\mu$$
F capacitor is shorted,  $V_{xy} = 0$ .

If the 40-
$$\mu$$
F capacitor is shorted,  $V_{xy} = 0$ .

combined capacitance between 
$$X$$
 and  $Y = 40 + 30$ 

$$= 70 \mu F$$

$$V_{XY} = (240 \text{ V}) \left( \frac{50}{50 + 70} \right)$$
= 100 V

- ∴ the 15-µF capacitor is shorted.
- 3(a) Equivalent capacitance  $= \frac{1}{\frac{1}{3} + \frac{1}{2} + \frac{1}{3}}$  $= \frac{6}{7} \mu F$
- (b) The equivalent capacitance between X and Y,  $C_{XY}$  can be calculated by using the following equations.

$$\begin{cases} C = \sum_{i} C_{i} & \text{for capacitors in parallel} \\ C = \frac{1}{\sum_{i} \frac{1}{C_{i}}} & \text{for capacitors in series} \end{cases}$$

It is found that 
$$C_{XY} = \frac{546}{547} \, \mu\text{F}$$
  
= 0.998 2 uF

(c) The network can be considered as consisting of three capacitors, as shown in the following figure, of which C' has a capacitance equivalent to the remaining six capacitors in Figure 2.29.



Since the three capacitors are connected in series, the charge on each of the capacitors is the same.

$$Q = C_{xy}V_{xy}$$
  
= (0.998 2×10<sup>-6</sup>)(20)  
= 1.996×10<sup>-5</sup> C

4(a) (i) 
$$Q = CV$$
  
=  $(120 \times 10^{-12})(100)$   
=  $1.2 \times 10^{-8}$  C

(ii) 
$$E = \frac{1}{2}CV^2$$
$$= 6 \times 10^{-7} \text{ J}$$

(b) (i) Let  $C_1$  be the capacitance of the air-filled capacitor and  $C_2$  be the capacitance of the insulator-filled capacitor.

$$C = \frac{\varepsilon A}{d}$$

$$C_1 = \frac{\varepsilon_0 (A/2)}{d}$$

$$= \frac{(\varepsilon/6)(A/2)}{d}$$

$$= \frac{1}{12} \left(\frac{\varepsilon A}{d}\right)$$

$$= \frac{120 \text{ pF}}{12}$$

$$= 10 \text{ pF}$$
and  $C_2 = \frac{\varepsilon (A/2)}{d}$ 

$$= \frac{1}{2} \left(\frac{\varepsilon A}{d}\right)$$

$$= \frac{120 \text{ pF}}{2}$$

$$= 60 \text{ pF}$$

$$\therefore \text{ combined capacitance} = 10 \text{ pF} + 60 \text{ pF}$$
$$= 70 \text{ pF}$$

(ii) Since the capacitor is isolated, the total charge is constant.

$$Q = 1.2 \times 10^{-8} \text{ C}$$
Energy =  $\frac{Q^2}{2\text{C}}$ 
=  $\frac{(1.2 \times 10^{-8})^2}{2(70 \times 10^{-12})}$ 
=  $1.03 \times 10^{-6} \text{ J}$ 

- 5. (a) (i) Q = CV=  $(6 \times 10^{-6})(24)$ =  $144 \,\mu\text{C}$ 
  - (ii) Let  $q_1$  and  $q_2$  be the charges on the 6- $\mu$ F and 4- $\mu$ F capacitors respectively.

$$q_1 + q_2 = 144$$
 .....(1)  
 $\frac{q_1}{c_1} = \frac{q_2}{c_2}$   
 $\therefore 2q_1 = 3q_2$  .....(2)

Solving equations (1) and (2),

$$q_1 = 144 \,\mu\text{C} \times \frac{3}{5}$$

$$= 86.4 \,\mu\text{C}$$

$$q_2 = 144 \,\mu\text{C} \times \frac{2}{5}$$

$$= 57.6 \,\mu\text{C}$$

$$V = \frac{q_2}{2}$$

(iii) 
$$V = \frac{q_2}{C_2}$$
  
=  $\frac{57.6 \times 10^{-6}}{4 \times 10^{-6}}$   
= 14.4 V

(b) Let the new charges on the 6- $\mu$ F and 2- $\mu$ F capacitors be  $Q_1$  and  $Q_2$  respectively.

$$Q_1 + Q_2 = 86.4 \,\mu\text{C} - 57.6 \,\mu\text{C}$$
  

$$\therefore Q_1 + Q_2 = 28.8 \,\mu\text{C} \quad .....(3)$$

$$\frac{Q_1}{C_1} = \frac{Q_2}{C_2}$$

 $2Q_1 = 3Q_2$  .....(4)

Solving equations (3) and (4), we get

$$Q_1 = 17.28 \, \mu C$$

 $Q_2 = 11.52 \,\mu\text{C}$